TO PASS 80% or higher # **Recurrent Neural Networks** LATEST SUBMISSION GRADE 100% 1. Suppose your training examples are sentences (sequences of words). Which of the following refers to the j^{th} word in the i^{th} training example? 1 / 1 point - $\bigcirc \hspace{0.1in} x^{(i) < j >}$ - $\bigcirc \ x^{< i > (j)}$ - $\bigcap x^{(j) < i >}$ - $\bigcirc \ x^{< j > (i)}$ ✓ Correct We index into the i^{th} row first to get the i^{th} training example (represented by parentheses), then the j^{th} column to get the j^{th} word (represented by the brackets). 2. Consider this RNN: 1 / 1 point This specific type of architecture is appropriate when: - \bigcirc $T_x = T_y$ - $\bigcap T_x < T_y$ - $\bigcap T_x > T_y$ - $\bigcap T_x = 1$ ✓ Correct It is appropriate when every input should be matched to an output. - Speech recognition (input an audio clip and output a transcript) - Sentiment classification (input a piece of text and output a 0/1 to denote positive or negative sentiment) - Image classification (input an image and output a label) - Gender recognition from speech (input an audio clip and output a label indicating the speaker's gender) 4. You are training this RNN language model. 1 / 1 point At the t^{th} time step, what is the RNN doing? Choose the best answer. igcup Estimating $Pig(y^{<1>},y^{<2>},\ldots,y^{< t-1>}ig)$ ~ · · · _/ -/- | You have finished training a language model RNN and are using it to sample random sentences, as follows: | | |---|--| | What are you doing at each time step t? (i) Use the probabilities output by the RNN to pick the highest probability word for that time-step as ŷ^{<t></t>}. (ii) Then pass the ground-truth word from the training set to the next time-step. (i) Use the probabilities output by the RNN to randomly sample a chosen word for that time-step as ŷ^{<t></t>}. (ii) Then pass the ground-truth word from the training set to the next time-step. (i) Use the probabilities output by the RNN to pick the highest probability word for that time-step as ŷ^{<t></t>}. (ii) Then pass this selected word to the next time-step. (i) Use the probabilities output by the RNN to randomly sample a chosen word for that time-step as ŷ^{<t></t>}. (ii) Then pass this selected word to the next time-step. Correct Yes! | | | You are training an RNN, and find that your weights and activations are all taking on the value of NaN ("Not a Number"). Which of these is the most likely cause of this problem? Vanishing gradient problem. Exploding gradient problem. ReLU activation function g(.) used to compute g(z), where z is too large. Sigmoid activation function g(.) used to compute g(z), where z is too large. | | 7. Suppose you are training a LSTM. You have a 10000 word vocabulary, and are using an LSTM with 100-dimensional activations $a^{< t>}$. What is the dimension of Γ_u at each time step? 1 / 1 point ✓ Correct 6. 5. ### Correct Correct, Γ_u is a vector of dimension equal to the number of hidden units in the LSTM. 8. Here're the update equations for the GRU. $a^{<t>} = c^{<t>}$ ### 1 / 1 point ## GRU $$\tilde{c}^{< t>} = \tanh(W_c[\Gamma_r * c^{< t-1>}, x^{< t>}] + b_c)$$ $$\Gamma_u = \sigma(W_u[c^{< t-1>}, x^{< t>}] + b_u)$$ $$\Gamma_r = \sigma(W_r[c^{< t-1>}, x^{< t>}] + b_r)$$ $$c^{< t>} = \Gamma_u * \tilde{c}^{< t>} + (1 - \Gamma_u) * c^{< t-1>}$$ Alice proposes to simplify the GRU by always removing the Γ_u . I.e., setting Γ_u = 1. Betty proposes to simplify the GRU by removing the Γ_r . I. e., setting Γ_r = 1 always. Which of these models is more likely to work without vanishing gradient problems even when trained on very long input sequences? - Alice's model (removing Γ_u), because if $\Gamma_r \approx 0$ for a timestep, the gradient can propagate back through that timestep without much decay. - Alice's model (removing Γ_u), because if $\Gamma_r \approx 1$ for a timestep, the gradient can propagate back through that timestep without much decay. - igordown Betty's model (removing Γ_r), because if $\Gamma_u pprox 0$ for a timestep, the gradient can propagate back through that timestep without much decay. - Betty's model (removing Γ_r), because if $\Gamma_u \approx 1$ for a timestep, the gradient can propagate back through that timestep without much decay. Yes. For the signal to backpropagate without vanishing, we need $c^{< t>}$ to be highly dependant on $c^{< t-1>}$. LSTM 9. Here are the equations for the GRU and the LSTM: ### 1 / 1 point # GRU # $\tilde{c}^{< t>} = \tanh(W_c[\Gamma_r * c^{< t-1>}, x^{< t>}] + b_c) \qquad \qquad \tilde{c}^{< t>} = \tanh(W_c[a^{< t-1>}, x^{< t>}] + b_c)$ $\Gamma_u = \sigma(W_u[c^{< t-1>}, x^{< t>}] + b_u) \qquad \qquad \Gamma_u = \sigma(W_u[a^{< t-1>}, x^{< t>}] + b_u)$ $\Gamma_r = \sigma(W_r[c^{< t-1>}, x^{< t>}] + b_r) \qquad \qquad \Gamma_f = \sigma(W_f[a^{< t-1>}, x^{< t>}] + b_f)$ $C^{< t>} = \Gamma_u * \tilde{c}^{< t>} + (1 - \Gamma_u) * c^{< t-1>} \qquad \qquad \Gamma_o = \sigma(W_o[a^{< t-1>}, x^{< t>}] + b_o)$ $C^{< t>} = \Gamma_u * \tilde{c}^{< t>} + \Gamma_f * c^{< t-1>} \qquad \qquad C^{< t>} = \Gamma_u * \tilde{c}^{< t>} + \Gamma_f * c^{< t-1>}$ | | From these, we can see that the Update Gate and Forget Gate in the LSTM play a role similar to and in the GRU. What should go in the the blanks? | | |----|--|-----------| | | $igotimes\Gamma_u$ and $1-\Gamma_u$ | | | | $igcap \Gamma_u$ and Γ_r | | | | $igcirc$ $1-\Gamma_u$ and Γ_u | | | | $igcap \Gamma_r$ and Γ_u | | | | ✓ Correct Yes, correct! | | | | | | | 0. | You have a pet dog whose mood is heavily dependent on the current and past few days' weather. You've collected data for the past 365 days on the weather, which you represent as a sequence as $x^{<1>},\dots,x^{<365>}$. You've also collected data on your dog's mood, which you represent as $y^{<1>},\dots,y^{<365>}$. You'd like to build a model to map from $x\to y$. Should you use a Unidirectional RNN or Bidirectional RNN for this problem? | 1/1 point | | | Bidirectional RNN, because this allows the prediction of mood on day t to take into account more
information. | | | | Bidirectional RNN, because this allows backpropagation to compute more accurate gradients. | | | | $ \bigcirc$ Unidirectional RNN, because the value of $y^{< t>}$ depends only on $x^{<1>},\dots,x^{< t>}$, but not on $x^{< t+1>},\dots,x^{<365>}$ | | | | O Unidirectional RNN, because the value of $y^{< t>}$ depends only on $x^{< t>}$, and not other days' weather. | | | | ✓ Correct Yes! | | | | | | | | | | | | | |