

## ✓ Congratulations! You passed!

TO PASS 80% or higher

**Keep Learning** 

GRADE 100%

## **Natural Language Processing & Word Embeddings**

LATEST SUBMISSION GRADE 100%

|    | x (input text)                                                                                                                                                                                                                                                       | (happy?)                  |  |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|--|
| 3. | Suppose you download a pre-trained word embedding which has been trained on a huge corpus of text. You then use this word embedding to train an RNN for a language task of recognizing if someone is happy from a short snippet of text, using a small training set. |                           |  |
|    | ✓ Correct<br>Yes                                                                                                                                                                                                                                                     |                           |  |
|    | An open-source sequence modeling library                                                                                                                                                                                                                             |                           |  |
|    | A supervised learning algorithm for learning word embeddings                                                                                                                                                                                                         |                           |  |
|    | A non-linear dimensionality reduction technique                                                                                                                                                                                                                      |                           |  |
|    | A linear transformation that allows us to solve analogies on word vectors                                                                                                                                                                                            |                           |  |
| 2. | What is t-SNE?                                                                                                                                                                                                                                                       |                           |  |
|    | Correct The dimension of word vectors is usually smaller than the size of th sizes for word vectors ranges between 50 and 400.                                                                                                                                       | e vocabulary. Most common |  |
|    | False                                                                                                                                                                                                                                                                |                           |  |
|    | ○ True                                                                                                                                                                                                                                                               |                           |  |
| 1. | Suppose you learn a word embedding for a vocabulary of 10000 words. The should be 10000 dimensional, so as to capture the full range of variation and                                                                                                                | _                         |  |
|    |                                                                                                                                                                                                                                                                      |                           |  |

1 0

1

Then even if the word "ecstatic" does not appear in your small training set, your RNN might reasonably be expected to recognize "I'm ecstatic" as deserving a label y=1.



I'm feeling wonderful today!

I'm bummed my cat is ill. Really enjoying this!

|    | ○ False                                                                                                                                                                                                                                                          |           |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
|    | Correct Yes, word vectors empower your model with an incredible ability to generalize. The vector for "ecstatic would contain a positive/happy connotation which will probably make your model classified the sentence as a "1".                                 |           |
| 4. | Which of these equations do you think should hold for a good word embedding? (Check all that apply)                                                                                                                                                              | 1/1 point |
|    | ✓ Correct Yes!                                                                                                                                                                                                                                                   |           |
|    | $igsqcup e_{boy} - e_{girl} pprox e_{sister} - e_{brother}$                                                                                                                                                                                                      |           |
|    | $ ightharpoonup e_{boy} - e_{brother} pprox e_{girl} - e_{sister}$                                                                                                                                                                                               |           |
|    | ✓ Correct Yes!                                                                                                                                                                                                                                                   |           |
|    | $igsqcup e_{boy} - e_{brother} pprox e_{sister} - e_{girl}$                                                                                                                                                                                                      |           |
| 5. | Let $E$ be an embedding matrix, and let $o_{1234}$ be a one-hot vector corresponding to word 1234. Then to get the embedding of word 1234, why don't we call $E*o_{1234}$ in Python?                                                                             | 1/1 point |
|    | $\bigcirc$ The correct formula is $E^T*o_{1234}$ .                                                                                                                                                                                                               |           |
|    | This doesn't handle unknown words ( <unk>).  None of the above: calling the Python snippet as described above is fine.</unk>                                                                                                                                     |           |
|    | None of the above, calling the Python shipper as described above is fine.                                                                                                                                                                                        |           |
|    | <ul> <li>Correct</li> <li>Yes, the element-wise multiplication will be extremely inefficient.</li> </ul>                                                                                                                                                         |           |
| 6. | When learning word embeddings, we create an artificial task of estimating $P(target \mid context)$ . It is okay if we do poorly on this artificial prediction task; the more important by-product of this task is that we learn a useful set of word embeddings. | 1/1 point |
|    | True False                                                                                                                                                                                                                                                       |           |
|    | ✓ Correct                                                                                                                                                                                                                                                        |           |
| _  |                                                                                                                                                                                                                                                                  |           |
| 7. | In the word2vec algorithm, you estimate $P(t \mid c)$ , where $t$ is the target word and $c$ is a context word. How are $t$ and $c$ chosen from the training set? Pick the best answer.                                                                          | 1/1 point |
|    | c is the sequence of all the words in the sentence before t                                                                                                                                                                                                      |           |

|    | c is a sequence of several words immediately before $t$ . $c$ and $t$ are chosen to be nearby words. $c$ is the one word that comes immediately before $t$ .      |             |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
|    | ✓ Correct                                                                                                                                                         |             |
| 8. | Suppose you have a 10000 word vocabulary, and are learning 500-dimensional word embeddings. The word2vec model uses the following softmax function:               | 1 / 1 point |
|    | $P(t\mid c) = \frac{e^{\theta_t^T e_c}}{\sum_{l'=1}^{10000} e^{\theta_t^T e_c}}$ Which of these statements are correct? Check all that apply.                     |             |
|    | $	extstyle 	heta_t$ and $e_c$ are both 500 dimensional vectors.                                                                                                   |             |
|    | ✓ Correct                                                                                                                                                         |             |
|    | $\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $                                                                                                                          |             |
|    | $ ot\hspace{-1em} egin{array}{c} \theta_t \text{ and } e_c \text{ are both trained with an optimization algorithm such as Adam or gradient descent.} \end{array}$ |             |
|    | ✓ Correct                                                                                                                                                         |             |
|    | $\hfill \Box$ After training, we should expect $\theta_t$ to be very close to $e_c$ when $t$ and $c$ are the same word.                                           |             |
| 9. | Suppose you have a 10000 word vocabulary, and are learning 500-dimensional word embeddings. The GloVe model minimizes this objective:                             | 1/1 point   |
|    | $\min \sum_{i=1}^{10,000} \sum_{j=1}^{10,000} f(X_{ij}) (\theta_i^T e_j + b_i + b_j' - log X_{ij})^2$                                                             |             |
|    | Which of these statements are correct? Check all that apply.                                                                                                      |             |
|    | $\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $                                                                                                                          |             |
|    | $lacksquare$ $	heta_i$ and $e_j$ should be initialized randomly at the beginning of training.                                                                     |             |
|    | ✓ Correct                                                                                                                                                         |             |
|    | $lacksquare X_{ij}$ is the number of times word j appears in the context of word i.                                                                               |             |
|    | ✓ Correct                                                                                                                                                         |             |
|    | The weighting function $f(.)$ must satisfy $f(0)=0$ .                                                                                                             |             |
|    | Correct The weighting function helps prevent learning only from extremely common word pairs. It is not necessary that it satisfies this function.                 |             |

| 10. | You have trained word embeddings using a text dataset of $m_1$ words. You are considering using these      |  |
|-----|------------------------------------------------------------------------------------------------------------|--|
|     | word embeddings for a language task, for which you have a separate labeled dataset of $m_2$ words. Keeping |  |
|     | in mind that using word embeddings is a form of transfer learning, under which of these circumstance       |  |
|     | would you expect the word embeddings to be helpful?                                                        |  |

 $m_1 >> m_2$ 

 $\bigcirc \ m_1 << m_2$ 

✓ Correct