1 / 1 point



TO PASS 80% or higher

## **Module 3 Graded Quiz**

3. What is a graph in the mission planning context?

A plot of the car's throttle and steering actuation while executing a driving mission

LATEST SUBMISSION GRADE 100%

| 1. | Which best describes the mission underlying an autonomous vehicle's mission planner?                     | 1/1 point |
|----|----------------------------------------------------------------------------------------------------------|-----------|
|    | Generate an optimal, collision-free path to the required destination                                     |           |
|    | Compute the optimal vehicle behaviour for a given driving scenario                                       |           |
|    | Navigate a road network to the desired destination from the ego vehicle's position                       |           |
|    | <ul> <li>Correct</li> <li>Correct, this is the underlying goal of mission planning.</li> </ul>           |           |
| 2. | Which of these are examples of good values to optimize in a mission planner's objective function?        | 1/1 point |
|    | <ul><li>□ Deviation from the speed limit</li><li>☑ Time to destination</li></ul>                         |           |
|    | <ul> <li>Correct</li> <li>Correct, this is a good measure of the efficiency of a global path.</li> </ul> |           |
|    | Distance from obstacles                                                                                  |           |
|    | ✓ Distance travelled                                                                                     |           |
|    | <ul> <li>Correct</li> <li>Correct, this is a good measure of the efficiency of a global path.</li> </ul> |           |
|    |                                                                                                          |           |

|    | A chart of the different speeds reached during different road segments in a road network                                                                                   |             |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
|    | A discrete mathematical structure used for representing the road network                                                                                                   |             |
|    | O None of the above                                                                                                                                                        |             |
|    |                                                                                                                                                                            |             |
|    | <ul> <li>Correct</li> <li>Correct, we are referring to the graph commonly used in discrete math.</li> </ul>                                                                |             |
| 4. | True or false, Breadth-First Search (BFS) will explore the graph using a "last-in-first-out" data structure known as a stack.                                              | 1 / 1 point |
|    | ○ True                                                                                                                                                                     |             |
|    | False                                                                                                                                                                      |             |
|    | Correct Correct, BFS uses a "first-in-first-out" data structure known as a queue during the search process.                                                                |             |
|    |                                                                                                                                                                            |             |
| 5. | True or false, Breadth-First Search (BFS) will always find the optimal (shortest) path in an unweighted graph.                                                             | 1 / 1 point |
|    | True                                                                                                                                                                       |             |
|    | ○ False                                                                                                                                                                    |             |
|    | Correct Correct, BFS will explore all possible predecessors before reaching the goal node in an unweighted graph, and as a result will find the shortest path to the goal. |             |
|    |                                                                                                                                                                            |             |
| 5. | True or false, Breadth-First Search (BFS) will always find the optimal (shortest) path in a weighted graph.                                                                | 1/1 point   |
|    | O True                                                                                                                                                                     |             |
|    | True  False                                                                                                                                                                |             |
|    | ✓ Correct                                                                                                                                                                  |             |
|    | Correct, BFS will not always be able to find the shortest path if the graph edges have weights.                                                                            |             |

| 7. | In these graph search algorithms, what is the main purpose of keeping track of a "closed" set of graph vertices?                                        | 1 / 1 point |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
|    | It allows us to avoid getting stuck in cycles                                                                                                           |             |
|    | O It allows us to know how much of the graph has been searched                                                                                          |             |
|    | It helps us keep track of which vertices we still need to search                                                                                        |             |
|    | Correct Correct, by keeping track of which vertices we have already processed, we can avoid researching another vertex if the graph contains cycles.    |             |
| 8. | What is a min heap data structure?                                                                                                                      | 1 / 1 point |
|    | A block of memory useful for dynamic memory allocation                                                                                                  |             |
|    | A sorted list of autonomous driving mission priorities for a given driving scenario                                                                     |             |
|    | <ul> <li>A data structure that stores keys and values, and sorts the keys in terms of their associated values,<br/>from smallest to largest.</li> </ul> |             |
|    | <ul> <li>A data structure that stores keys and values, and sorts the keys in terms of their associated values,<br/>from largest to smallest.</li> </ul> |             |
|    | <ul><li>Correct</li><li>Correct, this is the definition of a min heap.</li></ul>                                                                        |             |
| 9. | True or false, in a min heap, the root of the heap (the first element) contains the node with the smallest value.                                       | 1 / 1 point |
|    | True                                                                                                                                                    |             |
|    | ○ False                                                                                                                                                 |             |
|    | Correct Correct, a min heap contains the node with the smallest value at the root.                                                                      |             |
|    |                                                                                                                                                         |             |

10. In Dijkstra's algorithm, suppose during the process of adding vertices to the open set, we come across a vertex that has already been added to the open set. However, this time we have found a lower cost to

1 / 1 point

|     | Nothing, as the vertex is already in the open set                                                                                                                     |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     | Nothing, as this is impossible under Dijkstra's algorithm                                                                                                             |
|     | Close the vertex, as we have now seen it twice during exploration                                                                                                     |
|     | Update the cost of that vertex in the open set's min heap                                                                                                             |
|     | Correct Correct, we will need to update the min heap to reflect the new path that we have found to that vertex for Dijkstra's algorithm to remain correct.            |
| 11. | What is a search heuristic in the context of mission planning?                                                                                                        |
|     | An estimate of the remaining cost to reach the destination                                                                                                            |
|     | A tool that autonomous vehicle's use for quickly identifying traffic congestion at a given intersection                                                               |
|     | Osomething that helps the autonomous vehicle efficiently change the autonomus driving mission depending on the situation                                              |
|     | A method that allows the autonomous vehicle to quickly identify obstacles in its surroundings                                                                         |
|     | ✓ Correct  Correct, this cost-to-go helps guide our search to improve speed.                                                                                          |
| 12. | Suppose I have a vertex at location (2.0, 3.0) and another at location (4.0, 5.0). What is the Euclidean distance between these two points (to three decimal places)? |
|     | 2.828                                                                                                                                                                 |
|     | ✓ Correct Correct                                                                                                                                                     |
| 13. | True or false, an admissable heuristic to the A* search algorithm will never underestimate the cost to reach                                                          |

the goal vertex.

reach this vertex than is presently stored in the open set's min heap. What should be done?

| ○ True                                                                                                                                                                                         |                 |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|
| False                                                                                                                                                                                          |                 |
| Correct Correct, an admissable heuristic is required to never overestimate the cost to reach the goal vertex.                                                                                  |                 |
| 14. Is the heuristic function h(v) = 0 an admissible heuristic?                                                                                                                                | 1/1 point       |
| Yes, and in this case A* degenerates into BFS                                                                                                                                                  |                 |
| Yes, and in this case A* degenerates in DIjkstra's                                                                                                                                             |                 |
| No, as in this case A* degenerates into BFS                                                                                                                                                    |                 |
| No, as in this case A* degenerates into Dijkstra's                                                                                                                                             |                 |
| Correct Correct, a zero-valued heuristic is admissible, and in this case A* is the same as Dijkstra's.                                                                                         |                 |
| 15. True or false, the min heap in A* contains the sum of the cost to reach each vertex plus the estimate o cost to reach the destination from said vertex, according to the search heuristic. | f the 1/1 point |
| True                                                                                                                                                                                           |                 |
| ○ False                                                                                                                                                                                        |                 |
| <ul> <li>Correct</li> <li>Correct, this is required to take advantage of the search heuristic.</li> </ul>                                                                                      |                 |
|                                                                                                                                                                                                |                 |