X Position Correct, the position and heading form the state in the bicycle model. LATEST SUBMISSION GRADE 100% 1. True or false, a kinematic model gives the equations of motion for our robot, while disregarding the 1 / 1 point impacts of mass and inertia. True False ✓ Correct Correct, kinematic models focus on motion and not mass or inertia. 2. True or false, a dynamic model is a model used exclusively for rotating robots. 1 / 1 point ○ True False Correct, a dynamic model is a model that takes mass and inertia into consideration within the equations of motion. 3. For the bicycle model, the state of the robot contains which of the following values? 1 / 1 point ✓ Heading ✓ Correct Correct, the position and heading form the state in the bicycle model. Curvature (30.50) | 9. | True or false, swath-based collision checking sweeps the ego vehicle's footprint along its path, and checks to see if any obstacles lie within this set of space. | |-----|---| | | TrueFalse | | | Correct Correct, swath-based collision checking computes the union of all footprints along the ego vehicle's path, then checks if obstacles lie within the region given by the swath. | | 10. | Which of the following is not true about circle based collision checking? | | | It uses circles to quickly estimate collision points by checking if the distance to an obstacle is less than any circle radius It uses the friction circle to estimate how close the ego vehicle can be to nearby obstacles It conservatively approximates the vehicle footprint using multiple circles It relies on discretizing the path into a sequence of points that the circles can be rotated and | | | Correct Correct, the friction circle is not relevant for the circle-based collision checking algorithm. | | 11. | To generate a set of arcs in the trajectory rollout algorithm, which input needs to be varied in our bicycle model? Heading | | | Velocity Angular Acceleration Steering Angle | | | Correct Correct, by varying the steering angle we get a set of arcs of varying curvature. | | | | 12. What is the objective function used in the trajectory rollout algorithm for determining which trajectory to select from the trajectory set? | | Maximize the distance from obstacles along the path | | |-----|---|-----------| | | Minimize the integral of heading changes along the path | | | | Minimize the distance from end of trajectory to goal | | | | Minimize the total absolute jerk along the path | | | | Correct Correct, by minimizing the distance from the end of the trajectory to the goal region, we greedily search for the goal region. | | | 13. | True or false, for a fixed velocity, larger steering angles will result in larger curvatures in our bicycle model. | 1/1 point | | | True False | | | | ✓ Correct Correct | | | 14. | True or false, the trajectory rollout algorithm finds an optimal path to the goal state according to the kinematic model. | 1/1 point | | | TrueFalse | | | | Correct Correct, the trajectory planner is myopic, and as a result only searches for locally optimal solutions at each planning step. | | | 15. | True or false, the trajectory rollout planner is always able to find a path to the goal state, if one exists. True False | 1/1 point | | | Correct Correct, because the trajectory rollout planner is a receding-horizon planner, it is possible for it to get stuck in certain situations. It can therefore only handle "simple" obstacles in a given scenario. | | | | me between planning cycles is 0.1 seconds, the previous velocity was 20.0 m/s, and the current v is 20.5 m/s, what is the approximate linear acceleration? | |----------|--| | 5 | | | | | | / | Correct | | | Correct | 20. Suppose we have a bicycle model travelling at constant steering angle delta = 0.0 rad, and length L = 1.0 m.